Studuino mini

プログラムロボットカーの利活用

1 起動 ダブルクリックして立ち上げます。

2 画面 スクラッチベースになっています。

コマンドグループパレット 1 Studuine BLOCK Programming Environ 100 100 mil Studuino and JPAN AM SIG AND U/Jー/* [A0] ポリン [A1] かりせンサー [A3] 未接続 [A4] LED [A5] フザー [A5] フザー サーボモーター 29 巻 90 周 2 DCT-9- M1 DiRS4 10 🔗 DOE-9- 🖭 (0)825 💷 (10) 🔗 DOT-9- MIN 🛊 🏧 🖌 DCモーター M1 🛛 を 正統 [46]光也/寸 [A7] 音センサー CCE-9- M1 1 1 101 DCE-9- M1 18 191 (€ 33- 85 36 60" 6H. センサーボード 🍎 ブザー AS (の出力を停止す) ドラッグ&ドロップ LED AND S ANT プロックパレット スクリプトエリア コンディションエリア

3 初期設定方法

入出力のポートを設定してあげる必要があります。

「編集」 「入出力設定」を選ぶ

4 入出力設定方法

入出力設定					×	
DCモーター 図 M1 図 M2	サーボモータ □ D5 □ □ D9 □	1 — D6 D10	D11	LED □ D5 (赤) □ D9 [錄]	口 D6 [黄]	
センサー/LED/ブザー						
☑ A0 赤5	ト線フォトリフレクタ	•	🗆 A4	光センサー	*	
□ A1 光t	2ンサー	-	🗖 A5	光センサー	*	
□ A2 光t	シンサー	-				
□ A3 光t	シンサー	-	□ 液晶	時計を使う		
チェックを全て外す OK キャンセル					キャンセル	

「チェックを全て外す」をクリック

DC モーターの「M1」・「M2」にチェックを入れる センサー/LED/ブザーの「A0」にチェックを入れる 右のプルダウンを選択して、「赤外線フォトリフレクタ」を選択する。 「OK」をクリック 画面が以下のように変更になる。

Studvino 🛡	局 ファイル 編集 実行 設定 ヘルプ
<u>動き</u> 調べる 変数	利御スタート
● サーボモーター ● を 90 \$	
OCモーター M1 の速さを 10 ODCモーター M1 を 正転	
- DCモーター M1 を 停止 -	
DCモーター M1 を 停止 ① ブザー ・ から 60 を出力す	

5 プログラムの作成

・衝突軽減システムプログラム

光の反射に応じて止まらない場合があります。赤外線フォトリフレクタの数値設定 は、その都度調整が必要です。基本は「50」で設定してください。 6 データの転送方法

ロボットの電源の OFF を確認。 USB ケーブルをつなぐ。

「実行」 「プログラム作成・転送」をクリック。 ファイル 編集 実行 設定 ヘルプ プログラム作成・転送

「基板のリセットボタンを押してください。」が出たら、ロボットのリセットボタンを押す。

ディスプレイの文字が消えたら、転送 OK。 ロボットの裏の電源を ON。

安全な場所で試走させる。